Abstract
Modelling suggests that achieving the World Health Organization's elimination targets for hepatitis C virus (HCV) is possible by scaling up use of direct-acting antiviral (DAA) therapy. However, poor linkage to health services and retention in care presents a major barrier, in particular among people who inject drugs (PWID). We identify and assess the cost-effectiveness of additional health system interventions required to achieve HCV elimination targets in Australia, a setting where all people living with HCV have access to DAA therapy.
We used a dynamic HCV transmission and liver-disease progression mathematical model among current and former PWID, capturing testing, treatment and other features of the care cascade. Interventions tested were: availability of point-of-care RNA testing; increased testing of PWID; using biomarkers in place of liver stiffness measurement; and scaling up primary care treatment delivery.
The projected treatment uptake in Australia reduced the number of people living with HCV from approximately 230,000 in 2015 to approximately 24,000 by 2030 and reduced incidence by 45%. However, the majority (74%) of remaining infections were undiagnosed and among PWID. Scaling up primary care treatment delivery and using biomarkers in place of liver stiffness measurement only reduced incidence by a further 1% but saved AU$32 million by 2030, with no change to health outcomes. Additionally replacing HCV antibody testing with point-of-care RNA testing increased healthcare cost savings to AU$62 million, increased incidence reduction to 64% and gained 11,000 quality-adjusted life years, but critically, additional screening of PWID was required to achieve HCV elimination targets.
Even with unlimited and unrestricted access to HCV DAA treatment, interventions to improve the HCV cascade of care and target PWID will be required to achieve elimination targets.