close search

Isotype-switched immunoglobulin G antibodies to HIV Gag proteins may provide alternative or additional immune responses to 'protective' human leukocyte antigen-B alleles in HIV controllers.

French MA, Center RJ, Wilson KM, Fleyfel I, Fernandez S, Schorcht A, Stratov I, Kramski M, Kent SJ, Kelleher AD

VIEW FULL ARTICLE
  • Journal AIDS (London, England)

  • Published 21 Aug 2013

  • Volume 27

  • ISSUE 4

  • Pagination 519-28

  • DOI 10.1097/QAD.0b013e32835cb720

Abstract

Natural control of HIV infection is associated with CD8 T-cell responses to Gag-encoded antigens of the HIV core and carriage of 'protective' human leukocyte antigen (HLA)-B alleles, but some HIV controllers do not possess these attributes. As slower HIV disease progression is associated with high levels of antibodies to HIV Gag proteins, we have examined antibodies to HIV proteins in controllers with and without 'protective' HLA-B alleles.

Plasma from 32 HIV controllers and 21 noncontrollers was examined for immunoglobulin G1 (IgG1) and IgG2 antibodies to HIV proteins in virus lysates by western blot assay and to recombinant (r) p55 and gp140 by ELISA. Natural killer (NK) cell-activating antibodies and FcγRIIa-binding immune complexes were also assessed.

Plasma levels of IgG1 antibodies to HIV Gag (p18, p24, rp55) and Pol-encoded (p32, p51, p66) proteins were higher in HIV controllers. In contrast, IgG1 antibodies to Env proteins were less discriminatory, with only antigp120 levels being higher in controllers. High-level IgG2 antibodies to any Gag protein were most common in HIV controllers not carrying a 'protective' HLA-B allele, particularly HLA-B*57 (P = 0.016). HIV controllers without 'protective' HLA-B alleles also had higher plasma levels of IgG1 antip32 (P = 0.04). NK cell-activating antibodies to gp140 Env protein were higher in elite controllers but did not differentiate HIV controllers with or without 'protective' HLA-B alleles. IgG1 was increased in FcγRIIa-binding immune complexes from noncontrollers.

We hypothesize that isotype-switched (IgG2+) antibodies to HIV Gag proteins and possibly IgG1 antip32 may provide alternative or additional immune control mechanisms to HLA-restricted CD8 T-cell responses in HIV controllers.