Abstract
Human immunodeficiency virus (HIV)-infected patients on combination active antiretroviral therapy (cART) are at increased risk of age-related complications. We hypothesized that nucleos(t)ide reverse transcriptase inhibitors (NRTI) may contribute to accelerated aging in HIV-infected individuals on cART via inhibition of telomerase activity.
Telomerase activity and telomere length (TL) were measured by quantitative polymerase chain reaction in vitro in activated peripheral blood mononuclear cells (PBMCs) cultured with NRTI and ex vivo in PBMCs from uninfected patients exposed to NRTI and from HIV-infected patients on NRTI-containing cART.
Lamivudine, abacavir, zidovudine, emtricitabine, and tenofovir significantly inhibited telomerase activity in activated PBMCs in vitro. Tenofovir was the most potent inhibitor of telomerase activity and caused greatest shortening of TL in vitro at the therapeutic concentration of 0.3 μM. PBMCs from HIV-infected patients receiving NRTI-containing cART (n = 39) had significantly lower telomerase activity than HIV-uninfected patients (n = 47; P = .011) and HIV-infected patients receiving non-NRTI-containing cART (n = 11; P < .001). TL was significantly inversely associated with age (P = .009) and the total duration on any NRTI (P = .01).
NRTIs and, specifically tenofovir at therapeutic concentrations, inhibit telomerase activity leading to accelerated shortening of TL in activated PBMCs. The relationship between NRTI, reduced telomerase activity, and accelerated aging requires further investigation in HIV-infected individuals on cART.